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FIN;. 4. Stanton number Sr, Nusselt number Nu and Reynolds 
analogy factor 2S//cr. Closed symbols refer to a thermally 
fully developed flow (I). 0, experimental values of SI; 

A, 2Sr/c,: 0, Nu: -. equation (I). 

however that this difference would have a significant effect 
on (I), which has been validated in the boundary layer when 
AH << A [9]. Assuming that the present value of Pr (-0.72) 
is sufficiently close to Pr = I, the close agreement between 
(I) and the present values of SC (Fig. 4) indirectly suggests 
that the assumption Pr, = I (or Reynolds’ analogy) should 
be reasonable, at least in the near-wall region, for the present 
situation. Direct numerical simulation data in the near-wall 
region of a thermally fully developed channel flow [IO] have 
confirmed the validity of Pr, = I (when Pr is near I). It 
would certainly be of interest to extend this conformation to 
a developing thermal layer. 

CONCLUSIONS 

A step change in heat flux has been applied to one of the 
walls of a fully developed turbulent channel How, while the 
other (opposite) wall is at approximately ambient tempera- 
ture. In the near-wall region, scaling on wall variables is 
satisfied to a good approximation by the mean temperature 
but not by the r.m.s. temperature. Sufficiently downstream 
of the step, mean and r.m.s. temperature distributions 
asymptote to values obtained for a thermally fully developed 
How. The streamwise variation ofthe Stanton number. Reyn- 
olds analogy factor and Nusselt number downstream of the 
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heating origin is well described by an empirical relation 
obtained for a boundary layer with an unheated starting 
length. 
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INTRODUCTION 

IN RECENT years a number of articles have been written on 
the wave model of heat propagation where the finite velocity 
of the heat wave is taken into account [l-7]. The wave model 
of heat propagation leads to a precise analysis of many 
physical phenomena which, when analysed by Fourier’s law, 
will result in some errors [2]. 

Classical examples of the correctness of the heat wave 
model are intensive heating of solids by means of laser wave 
impulses of high amplitude and short duration [8]. electro- 
magnetic radiation [9], fast heat How in rarefied media [IO], 
etc. 

Fourier’s law. when used in the classical analysis of 
thermal problems. defines the dependence hetween heal tlux 

intensity and time-space distribution of temperature T. By 
combining Fourier’s law with the principle of energy con- 
servation we obtain a parabolic equation of heat diffusion 

where a = /C/PC is the diffusion coefficient and /i, p and c 
are thermal conductivity, mass density and specific heat. 
respectively. A physical interpretation of the solution of 
equation (I) shows that the speed of heat propagation is 
infinite. In some of the cases mentioned above, there is, 
by necessity, a generalization of the mathematical model 
represented by equation (I). To achieve this we use a model 
of heat wave damping. Then Fourier’s law undergoes modi- 
fication and. in combination with the principle of energy 
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conservation. results in a heat propagation model in the form 
of a hyperbolic equation [I, 2. 81 

aV?T=cT+ S’T 
at *-, cl- (2) 

where r is the time of thermal relaxation. The solution of 
equation (2) can be interpreted as a superposition of damped 
heat waves propagating at a finite speed (I = ,/(g/~). 

Recent papers [I-IO] have shown differences in heat 
propagation resulting from the analysis of the parabolic 
model and hyperbolic model. The analysis was conducted 
only in the time domain. A question arises here in what 
conditions we can use the wave model of heat propagation, 
and which conditions are appropriate for the diffusion 
model. This article makes an attempt to answer this question. 

Taking thermal problems occurring in semiconductors 
[I I] into consideration, we shall assume a semi-infinite med- 
ium whose thermal field is excited by an external heat flux. 
Having defined the transfer function of the analysed system 
the analysis will be carried out in the frequency domain. 

DYNAMIC PROBLEMS OF HEAT FLOW 

We shall consider here a half-space representing a semi- 
infinite solid. In this half-space the temperature field T(s, I) 
is excited by an external heat flux cl”(/). 

We shall calculate the transfer function ofa system defined 
in the following way 

(3) 

where Qu(s)oc,u(/) is a Laplace transform of the surface 
heat flux (I,,(/) (input signal) and f(s,~)o T(s, I) is a 
Laplace transform of a temperature T(s, I) at an s coor- 
dinate point (output signal). 

The determination of the transfer function (equation (3)) 
of the system considered is convenient for the following 
reasons : 

(I) the dynamic properties of the half-space will be defined 
independently of the form of the heat flux striking the semi- 
infinite medium : 

(2) the values of the transfer function on the imaginary 
axis define both the amplitude characteristics 

/i(S.UJ) = IR(.Y,jOJ)i,)l, (4a) 

and phase characteristics of the semi-infinite solid 

+(s, w) = arg K(r, jw) ; and (4b) 

(3) Borel’s theorem on the convolution of two functions 
will make it possible to determine the response of the half- 
space on the input of a given heat flux form qO(/) 

T(s. I) = 
s 

4~ rlk/a(‘-v) dq (5) 
0 

where K(s. S) o /((s, I). 
Using a Laplace transform for the parabolic (I) and hyper- 

bolic (2) models. respectively, it is possible to determine the 
transfer function of the analysed system. 

Next, by examining the amplitude characteristics in the 
frequency domain connected with the parabolic and hyper- 
bolic equations, respectively, we can determine the limit fre- 
quency above which the wave model of heat propagation is 
valid. 

DYNAMICS OF WAVE HEAT FLOW 

In half-space equation (2) is reduced to the following form 

?T(x, I) dT(x, I) a2T(x, I) 
a a.2 al I L at2 (64 

Moreover 

y(s.,) = -kaT(sJ) 
as 

~ WK ‘) 
a/ (6b) 

The thermal field in the semi-infinite medium is excited by 
the heat flux 

Y(O,‘) = ydr). ’ 3 0. (7) 

According to the physical aspect of the problem the role of 
the second boundary condition is assumed by the following 
limit 

limT(.r,/)=O, />O. (8) 1-r 

Following the well-known definition of the transfer function 
it is necessary to introduce zero initial conditions concerning 
the heat flux, temperature and rate of temperature variation 

q(s,O) = 0 (9a) 

T(s.0) = 0 (9b) 

ST(s, I) 

a’ ,=” 
= 0, s 2 0. (9c) 

Having applied appropriate transformations and theo- 
rems (see Appendix I) to equations (6a) and (6b) with con- 
ditions (7). (8) and (9). we obtain according to definition (3) 
the following form of the transfer function of heat wave 
motion in the semi-infinite solid 

(10) 
On the basis of equation (IO) the amplitude characteristics 

of the system were determined 

A.(.v,w)=~;/(l+&)exp[-i.f(e./)] (Ila) 

where 

/“(CL)) = w J(l+&)cos(~+~arctanwr). (Ilb) 

Function (I la) is monotonically decreasing and achieves the 
following extreme values 

li’_moA,.(S,o) = cc (IN 

lim .4,,(\-.to) = qexp( -&). (I,- I (l2b) 

Phase characteristics of the system are as follows : 

I s 
&(s, 0)) = - 1 arctan ~ - -g(w) 

WT a (13) 

where 

g(w) = w4J( I + &)sin (a + jarctanor). (14) 

DYNAMICS OF DIFFUSION HEAT FLOW 

Diffusion heat flow is a limit case of wave heat motion, 
when the time of thermal relaxation tends to zero (r + 0). 
Then the velocity of wave propagation u = ,/(a/r) becomes 
infinitely great and in equation (2), the element responsible 
for the wave characteristics of the phenomenon disappears. 
For such a case the classical model of heat transfer holds 
true. It assumes the form of equation (I), which for a semi- 
infinite medium, takes the following form 

a9yx,f) a7ys,r) 
a-=ar' a.3 (Isa) 
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FIG. l(a). Amplitude characteristics of the wave (T = IO-” s) 

and diffusion (r = 0) heat flow for WE (20,90) rad SC’. 

Furthermore 

For the above case we also have to assume boundary 
conditions (7). (8). and initial conditions (9). The transfer 
function of the system K,,(s, S) can be determined by using 
Laplace transformation of (15a) and (15b). or on the basis 
of relation 

K‘/(s,s) = F-T K,, (s. s). (16) 

The transfer function of a semi-infinite solid for diffusion 
heat flow is as follows : 

K,,(s.s) = $ iexp( -.YJ(i)). (17) 

The amplitude characteristics take the form 

&(.Y,c0)=$I:;;exp(-xJ($). (IS) 

Function (18) is monotonically decreasing in relation to 
Q and reaches the following limit values 

Iii0 A&. w) = co (194 

$2 A&, w) = 0. (19b) 

Phase characteristics of the analysed system for diffusion 
heat Row are as follows : 

?I 
+,/(S,O)=---.Y 

w 
4 J( ) 

- 
2u 
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FIG. I(b). Amplitude characteristics of the wave (r = IO-” s) 
and diffusion (r = 0) heat flow for WE (10050, 10 100) 10’ 

rad SS’. 

NUMERICAL EXAMPLE 

We shall, at present, consider a semi-infinite solid. The 
transfer function of the system was defined by means of 
formulae (10) and (17). Atypical data were used in our 
computations [I I]. 

k = 145wm-‘K-‘1 

p = 2330 [kgm-“1 

c=700[Jkg-‘K-‘1 

a = 8.89 x 10e5 [m’s-‘1 

a = 9.429x lO’[ms~‘]. (21) 
In the computations the following relaxation time was 

assumed. r = IO-” s [7]. 
In normal conditions solids are characterized by a very 

short relaxation time (T) between 10mJ and IO-” s [l3, 141. 
In the above case the properties of the wave and diffusion 
media are practically identical in the range of low and 
medium frequencies (Figs. I(a) and (b)). 

For the parameters assumed above, the limit pulsation is 
about IO’ rad s- ‘. Above this value the diqPrences between 
the amplitude characteristics values being to increase signi- 
ficantly achieving several hundred percent larger for MHz 
range (Fig. 2). 

The increase of the relaxation time causes a fall in the 
speed of heat flow which is equivalent to what is appearing 
in the wave properties of the medium. For example, for 
r = IO-” s the limit pulsation of the amplitude characteristics 
decreases to about I5 x 10’ rad s-‘. The above fact results 
in considerable differences in amplitude characteristics at 
4x 10’ rad SC’ (Fig. 3). It should be noted here that phase 
characteristics of the above models are always similar. 
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FIG. 2. Amplitude characteristics of the wave (r = lo-” s) 
and diffusion (T = 0) heat flow for ~~(400700, 401 100) 

IO’ rad S-‘. 

TRANSIENT TEMPERATURE DISTRIBUTION 
EXCITED BY AN IDEAL TRIANGULAR 

IMPULSE 

Taking into account theoretical analysis of thermal 
phenomena in semiconductor devices. the triangular shape 
of the heat flux striking the semi-infinite solid is of great 
significance [I I]. The shape of the impulse is shown in Fig. 
4. Let l(r) be used to define the Heaviside function. The 
following analytical formula corresponds to the shape form 
of Fig. 4 : 

y&) = ~rl(r)-~(r-,,),(r-r,) 

with the transform 

+E(r-2r0)l(r-2r,) (22) 

Qo($ = F; -2: 5 e-“‘o+ F f e-‘2’,, (23) 
0 0 0 

From equation (3) we obtain 

F(x, s) = F(x, s) - 2F(*, s) e-I’D + F(.x, s) e- lr’o (24) 
where 

F(x,s) = F f K,.(x,s)-=/(x. f). (25) 
II 

QOW 
t 

K,,.(x, s) represents the transfer function for the wave heat 
propagation. 

Having performed the inverse transformations, the final 
formula for temperature distribution in the semi-infinite 
medium is obtained 

4opy it 

to 2to 
n&r) =./(.u,I)-2./(s. r-l”)+./(x. r-2r”) (26) FIG. 4. Ideal triangular impulse of heat flux 
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FIG. 3. Amplitude characteristics of the wave (r = IO” s) and 

diffusion (T = 0) heat flow for ~~(400. 405) lo” rdd SK’. 

where 

~(~~,I,=sl(l--:)[(J(r~)+li) 

~S:.e-~‘~‘,,,(~J(4’--~))d’i 

-u~~~~e~~~2rIo (Ad(n’-$))dn]. (27) 

I,(s) is a modified Bessel function of the first kind. 
For the analysis of the diffusion model formulae, equa- 

tions (22). (23) and (26) are not changed whereas function 
/(.s, I) = $(s, r) takes the form of 

t&x,,) = grli&exp( - &)dq 

-%l:J(E)exp(-&)dq. (28) 
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CONCLUSIONS 

The transfer functions described by relations (10) and (17) 
make it possible to determine the transform of temperature 
at any given point of the half-space considered. The transfer 
functions mentioned above are irrational and exponent func- 
tions of the complex variable s. Transfer functions (10) and 
(I 7) make it possible to define the dynamic properties of the 
medium for the case of wave and diffusion heat Bow. In 
the range of low and medium frequencies, the amplitude 
characteristics of the half-space analysed are identical for the 
wave and diffusion heat propagation. However, as soon as 
the frequency of the heat flux striking the semi-infinite solid 
increases over a certain limit, the differences between the 
diffusion and wave heat flow start to show. This fact leads 
to conclusions concerning the choice of the mathematical 
model describing the heat propagation in solids. 

The wave model of heat propagation is characterized by 
the so-called dead time for [E (0, x/a). In thiscase the thermal 
wave front will reach a depth x in the time s/a. In the 
diffusion model the excitations cause immediate pertur- 
bations of temperature at point x (equations (27). (28)). 

In general, the values of amplitude characteristics are 
higher for the medium of wave heat propagation. For the 
quick-changing signals in time the diffusion model gives a 
considerably lower value (formulae (I 2b) and (19b). Figs. 2 
and 3). 

By making use of the results obtained it is possible to 
determine limit frequencies of both the diffusion and wave 
models for a single impulse e.g. the triangular shape, depend- 
ing on its growth time. 
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APPENDIX 

Equation (6b) was transformed by means of a Laplace 
transform, applying the theorems on differentiation and 
derivative transformation 

d i;c.x, s) 
Q(s,s) = -kp 

d.\- - r.sQ(x, s) + rq(s, 0) (Al) 

where Q(.v, s) ey(~, I). The final term of formula (Al) was 
eliminated by using formula (9a). 

Substituting s = 0 after transformations we obtained 

dT(s.s) 
d.r ,=,, 

= - ; (I +sr)QO(s) 642) 

where QO(s) = Q(0. s) and ~~(1) = ~(0. I). 
We also transform, in relation to variable I, equation (6a) 

by applying the theorems mentioned above 

dT(*. I) 
-=dr ,=o 

--~sT(s, 0). (A3) 

By taking into account formulae (9b) and (SC). equation 
(A3) is considerably simplified 

d?i’(x,s) s(I +sr) _ 
dx’-- T(x.s) = 0. 

a (A4) 

A general solution of (A4). with respect to variable x with 
parameter s, is evident 

ii(x,s) = A(s)exp[ -Jt?))x] 

+8(s)exp[dtF).v]. (A5) 

In order to assign an unambiguous value to the root in the 
exponent, we chose such a branch of the root for which, 
when Re s 3 0, we have 

ReJ(F) k 0. 

Using the theorem on the limit with respect to the second 
variable for (8) we obtained 

!‘-“, T(x,s) = 0. (A7) 

Next equation (A5) was substituted in equation (A7). 
Taking equation (A6) into consideration we have 

B(s) = 0. 648) 
Hence, solution (A5) is reduced to the first term on the 

right-hand side. Calculating the first derivative of (A5) with 
respect to the geometrical coordinate (x = 0) and consider- 
ing (A2). after transformations, we have 

A(s) = +/(ff)Q&). (A9) 

By combining (A9), (A8) and (AS) and applying definition 
(3), we obtain the transfer function (IO) of the wave heat 
motion in half-space. 


